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Time Reversal of Quantum Experiments 
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Time reversal exchanges the roles of the initial and final stages of an experiment. 
This fact is properly represented here by an alternative time-reversal 
transformation in quantum theory. In elementary quantum experiments one 
prepares a system, lets it propagate over time, and checks for a particular value 
of a complete sequence of system variables. Following the operational 
interpretation of quantum theory, the initial and final stages of such experiments 
are represented by kets and bras. Hence, the new time-reversal transformation 
maps kets into bras and vice versa. Wigner's result about changes of description 
of a quantum system is extended so as to include transformations between kets 
and bras. lnvariance of the Schwinger action principle under time reversal requires 
the new time-reversal transformation to be linear. In this paper the time reversal 
of experiments is represented completely, whereas Wigner's formulation only 
applies to the propagation phase (so-called time evolution) of an experiment. 

1. INTRODUCTION 

When describing time reversal, Wigner (1959, w assumed the interpre- 
tation of quantum mechanics called orthodox by him and employed by most 
textbooks today. I call this interpretation the "state interpretation of quantum 
mechanics" because it clings to classical thought in that it takes for granted 
that a system always is in some state of being (Finkelstein, 1995, w 
As is done in classical physics, Wigner associated each state with a so-called 
time-reversed state. Given a (continuous) dynamical sequence of states in 
time which satisfies the equation of motion, the reversely ordered sequence 
of the time-reversed states satisfies the same equation of motion (which in 
case of T violation is governed by a somewhat different Hamiltonian.) 

In the context of the state interpretation of quantum mechanics, Wigner's 
time reversal suffices to describe the time reversal of the so-called undisturbed 
time evolution of a quantum system. However, any quantum experiment 
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starts with a preparation of a quantum system, continues with a propagation 
process (so-called undisturbed time evolution) of the system, and ends with 
a measurement on it. Wigner's formulation does not suffice to represent the 
time reversal of experiments completely, in that his notion of time reversal 
cannot be applied to the quantum system's spontaneous transition from the 
propagation process to the measurement outtake of the experiment. In this 
paper I formulate the time reversal of complete experiments. This formulation 
is based on the operational interpretation of quantum theory, according to 
which kets and bras represent different kinds of acts of the experimenter. 

I restrict myself to experiments whose propagation phase is not inter- 
rupted by filtering or other kinds of acts of the experimenter. Among these 
experiments I mainly concern myself with 'elementary' ones: In an elementary 
experiment the preparation of the system by the experimenter is maximal 
(Finkelstein, 1995, w167 1.3.2, 2.1), i.e., describable by a value of some 
complete sequence of system variables; and the measurement is a maximal 
test, i.e., a test for a particular value of some complete sequence of system 
variables. (A more complex measurement, such as of the position of a particle, 
can be regarded as the combination of parallel conducted tests, such as for 
particular position values.) The operations of the experimenter that start and 
end an experiment have, respectively, been called "preparation of the system 
in a state" and "test" by Giles (1970, Section 3), "preparation" and "registra- 
tion" by Ludwig (1983, 1985), "pre- and postselection" by Aharonov and 
Vaidman (1991), "initial" and "final acts" or "input" and "outtake operations" 
by Finkelstein (1995, w In this paper I reserve the terms input and 
outtake operations for maximally specified ones. Such input and outtake 
operations are represented by elements of dual vector spaces. These elements 
are called ket and bra vectors, respectively. In contrast, according to the state 
interpretation of quantum mechanics employed by Wigner and most textbooks 
today, kets and bras indiscriminately represent system "states" in the sense 
of states of being rather than modes of doing. 

Concretely, an attempted outtage operation, i.e., a test, consists in pre- 
senting a quantum system with a filter and second with a detector. Let us 
say that the outtake operation occurs, or that the test is positive, if the 
quantum system is detected. Let us call the experiment successful if the 
outtake operation occurs. 

My formulation of time reversal is based on the insight that the time 
reversal of an occurring outtake operation (represented by a bra) is an input 
operation (represented by a ket) and vice versa (Section 2). I extend Wigner's 
result about changes of description of a quantum system so as to include 
transformations between kets and bras (Section 3). We then find that time 
reversal is either represented by a unitary or by an antiunitary map T from 
kets to bras (and by its adjoint Tt). The question whether T is linear or 
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antilinear is decided by requiring that the Schwinger action principle be 
invariant under time reversal (Section 4). In order to fix Tcompletely, we need 
to supply the transformation behavior of  a complete sequence of variables of  
the system under study. The transformation property of  the Hamiltonian and 
the canonical momenta will be derived from their generator properties (which 
are implied by the Schwinger action principle). 

A point t of  the time axis T often will be denoted by its coordinate 
representation with respect to a particular time variable t: 

t = t : t '  (1.1) 

The statement that the variable t takes on the value t' is abbreviated into t : t'. 
Equations that only hold if the picture-independent Schwinger action 

principle is satisfied are called weak equations and distinguished from more 
general equations by using the symbol - rather than =.  

2. C O M P L E T E  D E S C R I P T I O N S  O F  AN E X P E R I M E N T  AND O F  
ITS T I M E  R E V E R S A L  

The time-reversal transformation depends on the chosen time axis. I 
restrict myself  to experiments that are conducted by an inertial experimenter. 
Hence, we only need to deal with a single time axis, so that the framework 
of quantum mechanics suffices. I employ a picture-independent formulation 
of quantum mechanics. Input operations at different times then are represented 
by elements of  ket vector spaces that are fibers of  a bundle over the time 
axis. Dually, outtake operations are represented by elements of  the dual bra 
bundle. The propagation process between the input and outtake operations is 
represented by a connection U (Mantke, 1995, Section 2; Asorey et aL, 1982). 

A connection U transports a ket ItS) E l(tl) at time tl into kets U(t2, 
q ) l ~ )  E l(t2) at other times t2, dually a bra (qol ~ lO(q) into (q~lU(tl, t2) 

l~ and has the composition property 

U(t3, tl) = U(t3, t2)U(t2, tl) (2.1) 

The restriction of  a connection U to a time interval [t~, t2] will be denoted 
by Utt~, 

U~l 2 = {U(t", t ')l  t", t ' ~ [th t2]} (2.2) 

The connection U~t2 over a time interval [tl, t2] describes a possible propagation 
process from t! to t2 maximally: the most detailed information about the 
propagation process that can be obtained experimentally is its effect on 
transition probabilities for experiments that start and end within the time 
interval [tl, t2]. Evidently, all this information is contained in the connection 
over this time interval. 
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I assume a positive-definite metric of  the ket spaces. The associated 
adjoint operator t maps kets into bras, and vice versa, and is antiunitary, 

t 

(~1 e I~ ,-, I+) ~ (t) (2.3) 

t 

(~lq~) = (go l ~ ) *  .-. (q~l~) (2.4/ 

I qJ) and (~1, as well as the operations they represent, we call adjoint to one 
another. The transition of  a quantum system from an input phase of an 
experiment to the adjoint outtake phase is compulsory. 

An elementary experiment % starts with an input operation, continues 
with a propagation process, and ends with an outtake operation, so that it is 
represented by a triplet 

E = ((qol, U[~, I~)), (qol ~ In(t2), I~) E /(tl) (2.5) 

The time reversal of  an experiment V" is a hypothetical experiment ~c r 
that would closely imitate a reversed film of the original experiment. If an 
elementary experiment % is successful, the input and outtake operations both 
occur. A film of an elementary experiment % run backward then makes the 
outtake operation of the experimenter look like an input operation, and vice 
versa. Hence, the time reversal %r of  the successful experiment % is repre- 
sented by the following kind of  triplet: 

Er = ((~rl ,  (Ur)',~, I tpro)), (0rl ~ IO(h), t tPr ~ ~ l(t2) (2.6) 

The preparations of the successful experiments % and %r, respectively, need 
to be regarded as time reversals of  one another. E and Er also represent these 
preparations of  the experiments, regardless of  whether % and % r are successful. 
Hence, the experiments % and %v as represented by E and Er, should be 
regarded as time reversals of  one another, regardless of  whether the experi- 
ments are successful. 

To be more general, let us consider a successful experiment ~ that starts 
with a maximal input operation, continues with a propagation process, and 
ends with a non-maximally specified outtake operation, so that it is represented 
by a triplet 

v = (v,  u',?, t0 ) ) ,  p2 = p = p ,  E I ( t2)@l~ I~) E /(tl) 

(2.7) 

In any orthogonal basis of  the subspace I~ C In(t2) the projector 
can be expanded as 
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d 
P = ~] I q~.)(q~.l (2.8) 

t l  = | 

The experiment V" can be regarded as a parallel array of the elementary 
experiments %., 

E n = ((~p.] Utah, I~)), (q~,,i ~ /D(t2), ]~) ~ /(tO, n = 1 . . . . .  d 

(2.9) 

provided they share the same input operation, propagation process, and out- 
take detector. The dimension d of the orthogonal complement measures the 
multitude of possibilities the quantum system has to exit the experimental 
region and to reach the detector. This multitude can be implemented in a 
time-reversed experiment by inputting d systems into d experimental regions. 
Accordingly, the time-reversed experiment ~T is composed of the time- 
reversed elementary experiments %.T, 

E.T = ((d:rl, (UT):z ~, I~0.v~ 

(~TI ~ ID(t0, I~0.T ~ ~ l(t2), n = 1 . . . . .  d (2.10) 

In the experiment ~ v  d systems are prepared parallely, in manners represented 
by the various kets I q~.ro). The parallel experiments %,,v shall share the same 
outtake detector, which shall be sensitive to whether any system left an 
experimental region through the outtake channel represented by (~bTI, but 
not to how many systems have done so. 

We have seen now how the problem of time reversal of general experi- 
ments can be reduced to the time reversal of elementary ones. With equation 
(2.6) we obtained the general form of the transformation law of elementary 
experiments; in particular, the ketvector at t~ is mapped into a bravector at 
tt, and the bravector at tz is mapped into a ketvector at t2. 

For a complete determination of the time-reversal transformation, one 
requires a concept of time-reversal invariance of a system dynamics. We 
call the dynamics of the system under study time-reversal invariant if any 
elementary experiment % and the associated experiment ~test-T, to be defined 
in the following, have the same transition probability. To define C~test_ T o n e  
first replaces the input operation of% with the time-reversed outtake operation 
of %, and dually the outtake operation with the time-reversed input operation. 
The new input and outtake operations are represented by I q~r) E l(t2) and 
(~rl ~ l(h)o, respectively. In order to c o n s t r u c t  ~tes t -T o u t  of these operations, 
we require a connection to parallel transport them to the reversed times. 
Then the outtake operation, as in the original experiment, succeeds the input 
operation after the time span At' = t ( t 2 )  - t ( t t ) .  A connection is equivalent 
to a picture (Mantke, 1995, Section 2). I propose that the connection appro- 
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priate for the definition of ~ t e s t - T  is equivalent to the 'standard' picture B(X). 
In the case of a mechanical system, let q denote the sequence of mechanical 
configuration operators. Then B(• also called the configuration picture, is 
defined by the following property: In B(• the eigenkets (and dually eigenbras) 
of the configuration operators q at different times with equal eigenvalues are 
represented by the same vector at the chosen reference time to, 

Vt ~ T I q : q', t) x = I q : q', to) ~ /(to) (2.11) 

[In case q are Cartesian coordinates, B(• is the SchrOdinger picture.] In the 
case of a field system, q(cr) denotes the uncountable sequence of field opera- 
tors on a spacelike surface. Like Schwinger (195 I, Section II), let us employ 
complete sequences ~(cr) of commuting operators, similarly constructed from 
q(cr) for each spacelike surface ~. I restrict myself to those spacelike surfaces 
gt that consist of simultaneous points relative to the chosen time axis. In the 
standard picture B(X) of the field system, an equation like (2.11) holds for 
the eigenvectors of the complete sequences ~(cr,). 

The propagation process of ~test-T shall be govemed by the original 
dynamics, which is represented by the connection U. Let U x denote the 
representation of U in the configuration picture. In this picture ~test-r  is 
represented by 

E~test_ r : (•  , (UX):tt 1, Iq0T)• X(tllTI E /O(to), JtpTO) XE [(to) 

where 

t ( - t )  = - t ( t )  (2.12) 

If the transition probability of ~test-T is equal to the one of %, 

I(qol U(t2, t l ) l ~ ) l  2 IX(~T I UX(--tl ,  --t2)lq>TD)Xl 2 
= (2.13) 

we say that the dynamics is time-reversal invariant for the quantum process 
that occurs in the successful experiment %. If this holds for all elementary 
experiments %, the dynamics is completely time-reversal invariant. 

We have seen that the concept of time-reversal invariance and hence 
the time-reversal transformation are linked to a particular picture. 

The time reversal linked to the configuration frame will be determined 
by requiring that it leave the Schwinger action principle invariant. 

3. AN EXTENSION OF WIGNER'S RESULT ABOUT 
REPRESENTATION CHANGES 

In order to prepare the invariance considerations of the action principle, 
I extend Wigner's result about representation changes (Wigner, 1931, w 
1959, w167 26). 
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In this discussion I suppress the time index t. An input and an outtake 
operation are respectively represented by a ray of ketvectors and a ray of 
bravectors, or by nonzero elements of these rays. In the preceding section it 
became clear that the modes, input and outtake operation, are not necessarily 
invariant under representation changes of experiments: Under representation 
changes that involve time reversal, input operations become outtake opera- 
tions and vice versa; other representation changes do not change the input 
or outtake mode. In any case, the representation changes of input and outtake 
operations are transformations of ketrays in I and brarays in I ~ into rays in 
dual vector spaces, respectively, denoted as I' and I '~ Here I' is a Hilbert 
space isomorphic to I. When time reversal is involved, I' = I ~ otherwise 
I ' = I .  

A ray of ketvectors can be represented by one of its nonzero elements. 
For any nonzero 10) �9 I which represents some ketray let us choose an 
element 10w) �9 I' of the transformed ketray that is normalized like 10), 

(010) = (0wl0w) (3.1) 

Next we define a not necessarily linear operator W on I to be the function 
that maps a nonzero 10) �9 I into the associated 10w) �9 I' and the zero ket 
into itself, 

0, 10) g: 0 �9 L WI0) = 10w) �9 I ' ,  W0 = 0' E I' (3.2) 

(W stands for Wechsel, the German word for change. Wigner used the symbol 
OR instead, because his argument was sparked by the question of representa- 
tion change under a rotation.) The transition from an input operation to its 
adjoint outtake operation is compulsory. This also holds after a representation 
change, including time reversal. Hence, (2.3) should transform into 

t 

(0wO I �9 [,O ,..., l o w )  �9 ! '  ( 3 . 3 )  

Let (q01 and (tpwal denote bras that represent the same outtake operation 
before and after the representation change, respectively. Because of (3.3) we 
can drop the superscript D of W in (~wol. This, together with (3.2), gives 2 

2 W t as defined here has the following property: For (tpt E I ~ and let) E I' 

(~l w'i a) = (,pwl a) = (al~0w)* = (a t wt ~0)* 

(Later, W will be either a linear or an antilinear operator.) If W is an antilinear operator, my 
definition of  the adjoint of  W needs to be distinguished from a definition, employed, for 
example, by Nachtmann (1986, w according to which 

(~01Wt(Nachtmann) Ict) = (or I WI ~0) 

Moreover, if W is antiunitary, W t as defined by me is not equal to W -I,  in contrast to 

Wt(Nachtmann) = W-I 
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(q~ lW t = (tpwI = (q~WDI E I 'D (3.4) 

Like Wigner, let us assume that the probability for instantaneous transi- 
tions is invariant under representation changes. In terms of our associated 
ray representors this assumption is equivalent to 

I(,~i,l,)i = i(~wt~w)t = i(,~tW~Wl~)l (3.5) 

Furthermore, Wigner proposed that W should map an orthogonal basis into 
an orthogonal basis. He then showed that for each I~) the phase of the 
associated 10w) can be chosen so that W becomes either a unitary or an 
antiunitary (Wigner, 1959, w167 26) operator. Wigner assumed that W is 
a map from I to I. Nevertheless, his argument is also valid if W is a map 
from I to I' ~ I. 

Hence, I can use his result for my time-reversal transformation, which 
maps kets into bras and vice versa: One can fix the phases of  the transformed 
ket and bra vectors in (2.6) such that they are obtained by operators T and 
T t that are either unitary or antiunitary, 

(~I/TI = TIdj) E /D(t),  I q~TO ) = (tpl T t = I q0T) �9 l(t) 

T unitary or antiunitary (3.6) 

In order to discuss the representation change of experiments that include 
a propagation process, I need to reintroduce time indices. W, e.g., T, is a 
smooth family of operators W(t) parametrized by time, 

I~)  �9 l( t) ,  I t~w ) = W I ~ )  = W(t)l~J) �9 l ' ( t )  (3.7) 

Next, I derive the connection Uw which represents the propagation 
processes after a representation change. As for instantaneous transitions, I 
assume that the transition probability for experiments with a propagation 
phase is invariant under representation changes, 

I(r U(t2, t t ) l ~ ) l  = I(tpwl Uw(t2, t l ) l t~w)l  = I(r I Uw(t2, tt)WId~)l 
(3.8) 

According to (3.5), the left side is also equal to 

I(r U(t2, t t ) l ~ ) l  = I(qowl WU(t2, t l ) l ~ ) l  (3.9) 

Because (3.8) and (3.9) hold for all IV) �9 l(t) and for all (tpwI �9 I 'D(t), 

ei~b(t2'tl)Uw(t2, t l ) W  = WU(t2, t l)  (3.10) 

This equation needs to hold for all times t I and t2. The transformed connection 
Uw also needs to satisfy the composition law (2.1), as does U. Hence, the 
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phase factor needs to have the composition property, too, so that we can 
absorb it into the transformed connection, 

Uw(t2, tl) = WU(t2, t l)W -I (3.11) 

The inverse of  W exists, because W is either unitary or antiunitary. Further- 
more, Uw is a unitary connection, because the product of  three unitary opera- 
tors, or of  one unitary and two antiunitary ones, is unitary (Wigner, 1959, 
w Thus, Uw(t2, tl) = Uw(t2, t l )  i ' - I  and we can bring equation (3.11) into 
the alternative form 

Uw(t2, tl) = Wt-IU(t2, t l)W t (3.12) 

(Note that if W is antiunitary, W* :/: W -~. See footnote 2.) The transition 
amplitude is invariant or transformed into its complex conjugate, depending 
on whether W is unitary or antiunitary, 

(q0wl Uw(t2, t l) l~w) = (q0 U(t2, t t ) l~) ,  W unitary 

= (qo U(t2, t l ) l~)*,  Wantiunitary (3.13) 

To apply equation (3.11) to time reversal, we need to know the right 
and left actions of  Uw(t2, t~) in terms of  mappings. To be more general, let 
us transform a map A f rom/( t ' )  to/(t")  into the map W(A) from l ' ( t ' )  to/ ' ( t") ,  

let) ~ / ' ( t ' ) ,  W(A)Iot) = W A W - l l c x )  = W o A  o W-Z(Ict)) ~ l '(t") 
(3.14) 

where o denotes the composition of  mappings. The left action of  A, the so- 
called pullback A*, is a map from [O(t") to /O(t'), 

(tpl ~ l~ (q01A -~ A*((q01) E l~  (3.15) 

Similarly, the left action or pullback of  W(t) is a map W*(t) f r o m / ' ~  to 
/~ The left action or pullback of W(A)  is 

(131 ~ l '~ (131W(A) -- W(A)*((131) 
= W *-I (3.16) 
oA* 
o W*((13 I) E l '~  

4. T I M E - R E V E R S A L  I N V A R I A N C E  O F  T H E  P I C T U R E -  
I N D E P E N D E N T  S C H W I N G E R  A C T I O N  P R I N C I P L E  

According to (3.6), (3.12), (3.14), and (3.16), the representations of 
elementary experiments (2.5) transform either linearly or antilinearly into 
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where 

(q, ri  = Ti~,>, I h or) = (q~l T* 

(4.1) 
(Ur)',~ = { U r ( t ' ,  t") = T(U(t" ,  t ' ) ) l  t", t '  • [ t l ,  t2]} 

For the definition of  T(U(t", t')), recall that I use the ket notation for the 
images of  ket vectors under a general representation transformation W, (3.2), 
whereas I use the bra notation for the ones of T, (3.6). Consider a general 
map A from l(t ' )  to l(t"). In accordance with (3.14), T(A) therefore is the 
following left action on bra vectors: 

(etl ~ I~ (ctlT(A) ----- T(A)((etl) = T o A  o T-t((ot l )  ~ IO(t" ) 
(4.2a) 

In accordance with (3.16), the right action or pullback of T(A) is 

113) E l(t"), T(A)I13) ---- T(A)*(I13)) = T *-t  oA* o 7"*(113)) E l( t ' )  
(4.2b) 

In light of  (3.8) and (4.1), the a priori condition (2.13) for the system 
dynamics to be invariant under time reversal can be brought into the form 

U~(t l ,  t2) = U X ( - t 2 , - t l ) e  i0(q't2) = U - l x ( - t t ,  - t 2 ) e  i0(tt't2) (4.3) 

The index • indicates that this equation holds only in the configuration 
picture. The phase factor has the composition property, and hence 0 can be 
written as 

0(t  I, t2) = q0(tl) -- q0(t2), q0(t) : =  0(t ,  t,-) (4.4)  

where tr is an arbitrary reference time. The invariance condition now becomes 

U~(t l ,  t2) = e-i~(t2)UX(-t2,  - t l ) e  i~(ti) (4.5) 

We are now in the position to ensure the invariance of  the picture- 
independent Schwinger action principle (Mantke, 1992, 1995, Section 5). 3 
This principle is an extension of  the action principle by Schwinger (1960, 
1970), 4 who formulated his principle in the Heisenberg picture. The picture- 
independent quantum action is a functional that maps a connection U:~ over 
a time interval [t,, t2] into I(t2) ~ I~ 

3 In Mantke (1992) I failed to notice that the picture-independent Schwinger action does not 
act linearly on the dynamical connection because of the square velocity term of the Lagrangian. 

4Schwinger (1960) includes time variations into the class of dynamical changes, whereas I call 
variations of time kinematical, as I do variations of configuration. 
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f 
t ( t2)  

W[P~] := d t '  P(tz, t �9 t ' ) L ( t ' ,  q ,  ( l t .P)P(t  �9 t ' ,  tl) 
d / ( t  I ) 

(4.6) 

q is a smooth family of linear operators q(t) on the fibers l(t). Its connection 
derivative is the family of derivatives 

q,.p(t �9 t') = ~f, P ( t  " t ' ,  t "  t " ) q ( t  " t " ) P ( t  " t", t "  t ' )  
. =  , 

t I 

(4.7) 

The picture-independent form of the Schwinger action principle for a mechan- 
ical system is 

8(q : q", t21U(t 2, t t) lq : q', tl) 
�9 i 

- -  . i t  . i h (q q ' t21~W[Utt2] I q l  q , t~) 

(4.8a) 

[In the case of a field system one uses the eigenvectors of the complete 
sequences ~(cr,) introduced below equation (2.11) (Schwinger, 1951, Section 
II).] A few words are in order here to describe the variations involved in this 
equation. Say we express the functional W in terms of the variables t* = t 
+ ~ t ( t )  (including d t * )  and q *  = q + 3 q ( t ) .  The resulting form variation of 
W is equal to ~W. Similarly, the variation of the transition amplitude results 
from replacing the eigenket I q : q', t : t') of q at time tt = t : t' by the eigenket 

I q* : q ' ,  t*  : t ' )  = I q : ( q '  - ~ q ( t ) ) ,  t :  ( t '  - ~ t ( t ) ) )  (4.8b) 

of q* at time t*  : t '  = t : ( t '  - S t ( t ) )  with equal eigenvalue, and from replacing 
the eigenbra in the dual fashion. This completes the definition of the allowed 
kinematical variations. The dynamical variation of the transition amplitude 
is the matrix element of the dynamical variation of the evolution operator. 
The dynamical variation of the action is the form variation which represents 
the change of dynamics. For a given action, the action principle implies a 
particular phase convention for the configuration eigenvectors [Mantke 
(1992), equations (V.3.19), (V.3.28), and (V.6.18)]. Adding a total time deriva- 
tive of a function of t and q to the Lagrangian changes this phase convention, 
but not the dynamics (Mantke, 1992, Section V.4). 

I restrict the discussion for a while to a system with a time-reversal- 
invariant dynamics. According to the action principle, the functional form 
of the action determines the system dynamics. The invariance of the dynamics 
therefore requires that the transformed action is of the same form as the 
original action, up to a total time derivative of a function of t and q in the 
action integral. I choose the phases of the eigenvectors in the transformed 
action principle such that this total time derivative is zero, 
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f 
tT(tl) 

Wr[(Pr)~]  = dtr'  Pr ( t l ,  t "  tr ' )Lr(tr ' ,  qr, [qr]tr.t,r)Pr(t " tr', t2) 
JtT(t 2) 

f 
tr(t I ) 

= dtr' P:r(tt, t "  t r ' )L ( tG  qr, [glr]lr,?r)Pr(t " tr', t2) (4.9) 
dtT(t2) 

Hence, 

Lr(', ", ") = L( . , . ,  .) 

tr = - t ,  and q r  is defined by 

T q l ~ )  = (~r lq r  

Consequently, our time-reversed variables are 

tr  = - t ,  q r  = T(q)  

For the definition of T(.) see (4.2). 

(4.10) 

(4.11) 

(4.12) 

According to equations (4.1) and (4.7), the transformed connection deriv- 
ative is 

[qr]tr, er  = - [qr],.er = - T(qt.e) (4.13) 

It is well known that a system with the Lagrangian 

L(t ,  q, v) = � 89  - V(q)  (4.14) 

is time-reversal invariant, i.e., passes the test described at the end of  Section 
2. With the help of  (4.9), (4.12), and (4.13) we obtain for the time- 
reversed Lagrangian 

L r ( t f  , qr, [qr]w.er) = L ( t f  , qr,  [qr],r.er) 

| �9 . _ _  

= -~[qr]w.t, rm[qr]w, er  V(qr) 

Therefore, 

LT( tG qr, [qr],rer) = T(L( t ' ,  q, q,.e)) (4.15) 

The action of  a connection over a time interval then transforms tensorially, too, 

Wr[(PT)'4] = ,2 T(W[P,])  (4.16) 

This, together with (4.1), shows that the picture-independent Schwinger 
action principle (4.8a) transforms into 

8([q : q", t l ]T I  U T ( t l ,  t2) l [q : q', t2]T) 

�9 i 
= ~ ([q �9 q", tl]rl ~Wr[(Ur) ' ,~] l [q"  q ' ,  t2]r), T unitary (4.17) 
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~([q : q", tl]rl Ur(q, t2) l [q : q ' ,  t2]T)* 

�9 i ,, 
h ([q q ' tt]rl 8Wr[(Ur)tt~]l[q q , t2]r)* T antiunitary 

We conclude that for the action principle to be invariant, T needs to be a 
unitary map from bras to kets. The unitarity of T means that its adjoint is 
equal to the inverse of its pullback, 

T t = T *-t (4�9 

Let us now return to general, possibly noninvariant, actions�9 Equation 
(4.16) needs to hold also for noninvariant actions, so that the action principle 
remains invariant under T, i.e., so that (4.17) holds. A general action hence 
transforms as 

Wr[Pt~] = ~'~'2) 
J/T(tl) 

with 

T: W ~  Wr 

dt~ P(t 2, I " t~)Lr(t~, qr, [(tr],r.e)P( t"  t~, tl) (4.19a) 

where the transformed Lagrangian is defined by equation (4.15)�9 The Lagran- 
gian is an expression of coordinates and their connection derivatives. Equa- 
tions (4�9 (4.13), and (4.15) thus imply 

Lr(t', q, v) = L ( - t ' ,  q, - v )  (4.19b) 

which we expected from classical mechanics. 
So far my discussion has been quite general�9 q may have been a sequence 

of mechanical configuration operators, as in equations (2.11) and (4�9 or 
an uncountable sequence of field operators on a spacelike surface�9 In order 
to fix the time-reversal transformation completely, we need to know how q 
transforms. I perform the remaining analysis for a mechanical system, the 
analogous analysis for a field analysis being similar�9 

The configuration operators of a mechanical system are invariant, 

qr = q (4�9 

The configuration eigenkets transform into configuration eigenbras and vice 
versa. In order to fix the phases of the transformed configuration eigenvectors, 
I - - for  the second time in this section--refer to an invariant action Wi,v. The 
phase convention associated with an action [see below equation (4.8b)] is 
invariant whenever the action is invariant. This phase convention fixes the 
phase of the configuration eigenvectors up to a global phase�9 Let us rephase the 
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T operator such that this global phase is invariant as well. The configuration 
eigenvectors, whose phases are adapted to W~,v, then are invariant, 

TI t, q : q')winv = Winv( t' q : q' I, Winv(t, q : q' I T t = It, q : q')wi,v 

(4.21) 

and I have succeeded in determining T. In general, the phase conventions 
associated respectively with W~,v and a time-reversal noninvariant action W 
differ from one another, so that equations (4.21) do not hold for the convention 
associated with W. 

I continue with a derivation of  the transformation law of  the generators 
p and H, and close with the consequences of  time-reversal invariance of 
an action. 

Note that, by considering kinematic variations, the picture-independent 
Schwinger action principle implies (Mantke, 1992, Section V.6), 

I t :  (t '  + dt ' ) ,  q : (q '  + d q ' ) )  

( ,  i )  
- -  U( t  " t '  + d t ' ,  t " t ' )  1 + ~ t t  dt '  - ~ p dq '  I t ' t ' , q ' q ' )  (4.22a) 

where 

OL 
p := - -  H ( t ' ,  q, p )  =-- H ( t "  t ' )  :=  Dv(dh.u) .L  - L (4.22b) 

OV ' 

Dx(u), called the polarization operation, generates the linear change of  a 
function f of  operators a . . . .  x . . . .  due to a variation u of  the argument x 
(Finkelstein, 1955), 

D x ( u ) ' f ( a  . . . . .  x . . . .  ) :=  l i m f ( a  . . . . .  x + eu  . . . .  ) - f ( a  . . . . .  x . . . .  ) 
(~.0 E 

For the configuration eigenbras, the action principle implies the adjoint of 
equation (4.22a). Equation (4.22a) implies that in the configuration picture 
the dynamical connection is generated by the Hamiltonian 

i 
UX(t �9 t '  + d t ' ,  t "  t ' )  - -  1 - ~ HX(t �9 t ' )  d t '  (4.23) 

The time-reversed action principle, equation (4.17), implies the time- 
reversed versions of equation (4.22a) and its adjoint in terms of  variables Pr 
and H r  defined analogously to equation (4.22b). Applying T to equation 
(4.22a) and substituting -d t~ .  for dt ' ,  one finds the transformation law of the 
generators p and H, 
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Pr  --  -T(p) ,  H r  -- T ( H )  (4.24) 

For the transformed Hamiltonian function we obtain 

Hr(t~, qr, Pr)  = H ( - t ~ ,  qr, -P r )  (4.25) 

If the dynamics of the system is invariant under time reversal, the 
transformed Lagrangian function is equal to the original one, 

L(t ' ,  q, v) = Lr( t ' ,  q, v) = L ( - t ' ,  q, - v )  (4.10') 

Then the Hamiltonian function of equation (4.22b) is invariant as well, 

H(t ' ,  q, p )  = Hr( t ' ,  q, p )  = H ( - t ' ,  q, - p )  (4.26) 

Since the Hamiltonian operator generates the dynamical connection in the 
configuration picture, the invariance of the Hamiltonian function implies the 
invariance of the configuration representation of the connection, 

UX(t : f ' ,  t : t ' )  - -  UX(tr : #', tr  : t ' )  (4.27) 

Note that this symmetry is in accordance with the a pr ior i  invariance condi- 
tions (4.5) and (2.13). 

Moreover, for an invariant action the phase convention of the configura- 
tion eigenvectors [see Eq. (4.21)] and hence the generator p in Eq. (4.22a) 
do not change under time reversal, 

P "-- Pr  - - T ( p )  (4.28) 

Unless the Hamiltonian contains odd powers of t 'p ,  the invariance condition 
(4.25) implies that H is an even function of t' as well as of p, so that the 
Hamiltonian operator is invariant, 

H -- Hr - T(H) (4.29) 

5. CONCLUSIONS 

Wigner's antiunitary time-reversal operator Tw is equal to the composi- 
tion of my unitary operator T, which maps kets into bras, and the adjoint 
operator t, 

T w =  t ~  T * o t  (5.1) 

In terms of Wigner's time-reversal operator, the tensorial transformation, 
equation (4.2a), of a map A from l(t') to I(t") is 

(ctl �9 l~ (alT(A) -- T(A)((al) = ( T w o A  o Tw-I)t((al) �9 l~ 
(5.2a) 
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According to equations (4.18) and (4.2b), the right action or pullback of T(A) is 

113) ~ l(t") T(A)113) ~ T(A)*(I13)) = T t oA* o T*-1(113)) 

= T w o A * t  o Tw-,(113)) -~ TwAtTw-1113) ~ l(t ') 
(5.2b) 

The latter is familiar from the literature [e.g., Nachtmann (1986), {}4.5.3, p. 
66, below equation (4-141)]. 

For determining T, we required an a priori concept of time-reversal 
invariance [equation (2.13)] so that we would be able to identify a time- 
reversal invariant dynamics and action [equation (4.9)]. The invariance of 
this action allowed us to determine its transformation law [equation (4.16)] 
(which we later extended to general, possibly noninvariant, actions). With 
the help of the transformation law of the invariant action, we were able to 
show that T is linear rather than antilinear [equation (4.17)]. 

The dependence of the time-reversal transformation on the choice of a 
standard frame appeared in the a priori definition of time-reversal invariance 
(end of Section 2), in the transformation law of the variables q [equation 
(4.20) or field theory analog], and in the deduced invariance condition of 
the propagation processes [equation (4.27)]. 

As pointed out, there is a simple relationship between my operator T 
and Wigner's Tw. Still, the motivation for the derivation of T was quite 
different from Wigner's. Wigner assumed the state interpretation, called ortho- 
dox by him, of quantum mechanics. Accordingly, his time-reversal operator 
Tw maps a (continuous) dynamical sequence of state vectors in time, which 
satisfies the equation of motion, into the reversely ordered sequence of the 
so-called time-reversed state vectors, which satisfies the same equation of 
motion. That a system shall be in an abstract, invisible "state" is a concept 
of being, such as "having a position." I am convinced that quantum theory 
can be better understood if one interprets it in terms of concepts of becoming 
rather than of being. Hence I based my formulation on the operational interpre- 
tation of quantum theory, according to which kets and bras represent modes 
of performing, namely input and outtake operations of the experimenter. I 
achieved a complete representation of the time reversal of experiments (Sec- 
tion 2), whereas Wigner's time reversal only applies to the propagation 
(evolution) phase of an experiment. 
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